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ABSTRACT

To date, few attempts have been made to bench-
mark the alignment algorithms upon nucleic acid
sequences. Frequently, sophisticated PAM or
BLOSUM like models are used to align proteins, yet
equivalents are not considered for nucleic acids;
instead, rather ad hoc models are generally favoured.
Here, we systematically test the performance of
existing alignment algorithms on structural RNAs.
This work was aimed at achieving the following
goals: (i) to determine conditions where it is appropri-
ate to apply common sequence alignment methods
to the structuralRNAalignmentproblem.Thisindicates
where and when researchers should consider aug-
menting the alignment process with auxiliary informa-
tion, such as secondary structure and (ii) to determine
which sequence alignment algorithms perform well
under the broadest range of conditions. We find that
sequence alignment alone, using the current algori-
thms, is generally inappropriate ,50–60% sequence
identity. Second, we note that the probabilistic method
ProAlign and the aging Clustal algorithms generally
outperform other sequence-based algorithms, under
the broadest range of applications.

INTRODUCTION

Motivation

The use of multiple sequence alignments is an essential step
for many RNA sequence analysis methods [e.g. RNA structure
analysis (1–5), RNA homology search (6,7), non-coding
RNA (ncRNA) detection (8,9) and RNA-based phylogenetic
inference (10,11)]. Structural alignment of RNA is,
however, an open problem. An algorithm for simultaneous
structural RNA sequence alignment, structure prediction

and phylogenetic reconstruction has been proposed (12), yet
current implementations are limited in terms of functionality
and sequence size (13–18). A second structural RNA align-
ment approach employs (predicted) structures and aligns these
directly (19–21). Again these structures are generally limited
in terms of sequence size, but primarily suffer from the
inaccuracy of single sequence structure prediction (22–24)
[although, pruning low-probability base pairs yields modest
improvement (25,26)]. In addition, when structure is not
conserved algorithms which attempt to include RNA
structural information are likely to fail [e.g. methylation-
guide snoRNAs, Air-RNA]. Many of these methods are
also impractical when sequence length is large or when single
sequence structure prediction (27,28) performs poorly (24).

The performance of current sequence alignment methods
has been thoroughly analysed in terms of protein alignment
accuracy (29–32). Benchmarking has also been performed for
simulated non-coding DNA (33). However, the results of these
studies do not explore methods for the specific problem of
aligning structural RNAs. In this work, we extend these studies
and test the performance of current alignment algorithms upon
structural RNA datasets.

The aims of this work are 2-fold. First, to identify the
‘twilight zone’ of RNA sequence alignment—the homology
range below which sequence alignment alone is unlikely
to produce reliable results and researchers should
seriously consider augmenting the alignment process with
auxiliary information such as secondary structure. Second,
to identify algorithms capable of reliably aligning structural
RNA sequences under a range of sequence identities.

Alignment algorithms

The simplest form of an alignment is the pairwise sequence
alignment. This can be performed by aligning sequences glob-
ally (34) or locally (35), both employ dynamic programming,
thus resulting in a quadratic time complexity. Different scoring
schemes may be used, which already produce varying results.
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The alignment of multiple sequences is far more complex,
as the mathematically optimal solution imposes exponential
complexity. Therefore, heuristics are used, which do not
guarantee an optimal solution, but perform multiple sequence
alignment in reasonable time.

One common approach is called progressive alignment (36),
which builds a multiple alignment from pairwise alignments.
The idea is that an alignment of sequences, which have more
recently diverged, is more likely to be reliable. Thus, high-
scoring pairwise alignments are aligned first and next closely
related sequences (or alignments of sequences) are added
progressively. The order of this progressive alignment is, in
most cases, defined by a guide tree, which is created before-
hand from a distance matrix, produced by aligning all n n�1ð Þ=2
possible pairs of sequences first. The basic drawback of this
method is the fact that gaps introduced in an early step cannot
be removed during the later addition of sequences, e.g. errors
made in an early step propagate during the alignment process
(‘Once a gap always a gap’). The so-called iterative methods
prevent this by realigning sequences or sequence groups in the
multiple alignment, thus, theoretically optimizing the alignment
until successive iterations fail to improve the alignment or reach
a predefined limit (convergence).

Another class of algorithms is called consistency-based. Here,
a multiple alignment is constructed by extracting (maximum-
scoring) pairwise alignments from a library such that these
combined pairwise solutions are not contradictory or mutually
exclusive.

Probabilistic methods are an increasingly popular way of
generating solutions to biological problems. The basic premise
is to produce a model that one believes best describes the
system behaviour. Model parameters are subsequently estim-
ated from reliable data. In terms of sequence alignment, a
pairwise hidden Markov model-based approach has been
proposed (37), and now implemented and extended to multiple
sequence alignment (38,39).

The structural RNA alignment approach of Sankoff (12)
merges the recursions of Smith–Waterman (35) type sequence
alignment and Nussinov et al. (maximal base-pairing) (40) or
Zuker and Stiegler (energy-based) (41) RNA structure predic-
tion (15). The basic idea is to implicitly include base-pairing
interactions into the alignment procedure such that homo-
logous base pairs are aligned correctly. Unfortunately, the
algorithm is computationally expensive [O(n3m) in time,
and O(n2m) in space, where n is the sequence length and m
is the number of sequences]. Current implementations, Dyna-
lign (13,14), Foldalign (16), PMcomp (15) and Stemloc
(17,18), are restricted implementations of the Sankoff algo-
rithm, which impose practical limits on the size or the shape of
substructures. In addition, sensible score routines such as ther-
modynamics (13,14), a combination of sequence and thermo-
dynamic scores (16) and partition-function derived probability
matrices (15), can be used to score alignments.

Figure 1 shows a classification of all the programs used in
this study into the above categories.

MATERIALS AND METHODS

Accuracy measures

In order to evaluate alignment methods on structural RNAs,
we use two independent measures. First is the traditional

sum-of-pairs score (SPS) employed in many previous align-
ment benchmarks (29,32,33). SPS is defined as the fraction out
of all possible character pairs that are aligned in both the
predicted and the reference alignments. Perfectly predicted
(concordant) alignments receive an SPS of one, absolutely
imperfectly predicted (discordant) alignments receive an
SPS of zero. Although, for nucleotide alignments an SPS of
zero is rarely observed. Essentially, SPS provides a measure
of the sensitivity of the prediction. The second measure,
dubbed the structure conservation index (SCI), provides a
measure of the conserved secondary structure information
contained within the alignment (9). It is a derivative of the
score calculated by the RNAalifold consensus folding algo-
rithm (5,42) which is based upon the sum of a thermodynamic
and a covariance term and, in contrast to the SPS, is independ-
ent from a reference alignment. The SCI is close to zero if
RNAalifold identifies no common RNA structure in the align-
ment, whereas a set of perfectly conserved structures has
an SCI � 1. An SCI >1 indicates that there is a conserved
RNA secondary structure which is, in addition, supported by
compensatory and/or consistent mutations preserving the
common structure. We note that the SCI scores alignment
accuracy only in terms of the secondary structure information.
For example, if the helices of a secondary structure are accur-
ately aligned, it does not affect the SCI whether the loop
regions are well aligned in terms of sequence similarity.
The SCI specifically points out the structural aspect of align-
ment accuracy and, therefore, appears to be a useful measure
in addition to the SPS.

Alignment programs

We tested 11 sequence alignment programs and 4 structural
alignment programs (see Supplementary Material Table 1).
Where previous alignment benchmarks have only considered
the default or ‘out of the box’ behaviour we try testing a
range of parameter combinations for each alignment method.

Figure 1. An overview of alignment programs used in this work. Programs
were classified into the categories described in detail in Alignment algorithms
section.

2434 Nucleic Acids Research, 2005, Vol. 33, No. 8



Algorithm options are summarized in the Supplementary
Material Tables 2 and 3.

Test datasets

We generated four diverse structural RNA datasets of Group II
introns, 5S rRNA, tRNA and U5 spliceosomal RNA. The
sequences and the reference alignments for calculating the
SPS were obtained from the Rfam v5.0 database. SRP from
the SRPDB database was included in the original dataset but
was later discarded due to poor comparability between
predicted and structural alignments contained in this dataset
(the results suggest that a fraction of the SRP reference
sequences have been misaligned). Using the same procedure
as described previously (42), we generated �100 sub-
alignments for each family. The alignments contained five
sequences each and encompassed a range of sequence iden-
tities. This large dataset (hereafter referred to as dataset 1) was
divided into high (>75% sequence identity, 73 alignments),
medium (<75 and >55% sequence identity, 73 alignments)
and low (<55% sequence identity, 242 alignments) sequence

homology groups. An additional tRNA dataset was generated
with just two sequences to each alignment (hereafter referred
to as dataset 2). This was used to contrast pairwise structural
alignment methods and sequence alignment methods.

Caveat: tools improve

We note here that our data reflect the state of the art in early
2005. Most of the tools tested are relatively recent, and many
are still under development. Hence, not all the observations
below will remain reproducible. In fact, we hope this study
helps to obtain better results in the future.

RESULTS

Dataset 1: applicability of pure sequence alignment to
ncRNA sequences

All the 11 sequence alignment algorithms were tested upon
dataset 1. The results and the relative algorithm ranks for each
homology group are summarized in Table 1. We experimented

Table 1. The mean SCI score and mean SPSs computed for dataset 1 (see text for details)

Algorithm High homology (75% < seq. id) Medium homology (75% < seq. id < 55%) Low homology (seq. id < 55%)
SCI SPS Rank SCI SPS Rank SCI SPS Rank

Structural 0.9789 1.0000 0 0.9297 1.0000 0 0.7846 1.0000 0
Align-m (1) 0.9827 0.9600 5 0.8453 0.8825 22 0.4957 0.6748 25
Align-m (2) 0.9827 0.9600 6 0.8453 0.8825 21 0.4957 0.6748 24
Align-m (3) 0.9778 0.9593 7 0.8040 0.8742 26 0.4691 0.6635 29
Align-m (4) 0.9778 0.9593 8 0.8040 0.8742 25 0.4691 0.6635 28
Align-m (5) 0.8995 0.9419 30 0.7597 0.8583 30 0.4777 0.6460 30
Clustal 0.9438 0.9741 9 0.9100 0.9194 2 0.6064 0.7423 8

Clustal (qt) 0.9315 0.9743 12 0.8996 0.9123 9 0.6076 0.7345 9

DIALIGN 0.9071 0.9577 27 0.8018 0.8712 27 0.4979 0.6659 26
DIALIGN (o) 0.9077 0.9601 26 0.8568 0.8860 20 0.5202 0.6721 23
DIALIGN (it) 0.8590 0.9491 34 0.7519 0.8556 31 0.4669 0.6546 32
DIALIGN (it,o) 0.8492 0.9486 35 0.7092 0.8456 33 0.4467 0.6467 33
Handel 0.9604 0.9560 11 0.8570 0.8954 19 0.5360 0.7283 19
MAFFT (fftns) 0.8321 0.9145 36 0.5864 0.8030 37 0.3538 0.6448 37
MAFFT (fftnsi) 0.8840 0.9427 32 0.6655 0.8378 36 0.3845 0.6634 36
MAFFT (nwns) 0.9297 0.9502 25 0.6712 0.8349 35 0.3941 0.6724 35
MAFFT (nwnsi) 0.9330 0.9526 22 0.7004 0.8451 34 0.4071 0.6812 34
MUSCLE 0.9222 0.9684 19 0.8988 0.9181 5 0.6065 0.7668 2

MUSCLE (nj) 0.9268 0.9707 16 0.8841 0.9110 17 0.5902 0.7503 12
MUSCLE (mi32) 0.9222 0.9683 21 0.8959 0.9167 8 0.6069 0.7666 1

MUSCLE (mi32,mt6) 0.9222 0.9683 20 0.8959 0.9167 7 0.6068 0.7664 3

MUSCLE (nj,mt6) 0.9268 0.9707 15 0.8841 0.9110 16 0.5902 0.7503 11
MUSCLE (nj,mi32) 0.9268 0.9708 14 0.8855 0.9112 14 0.5897 0.7501 14
MUSCLE (nj,mi32,mt6) 0.9268 0.9708 13 0.8855 0.9112 13 0.5898 0.7501 13
PCMA 1.0030 0.9635 3 0.9196 0.9059 3 0.5339 0.6890 20
PCMA (agi20) 1.0030 0.9635 2 0.9255 0.9068 1 0.5621 0.7058 16
PCMA (agi60) 1.0030 0.9635 1 0.8938 0.8941 18 0.5270 0.6827 21
POA 0.8478 0.9644 33 0.7666 0.8739 29 0.4656 0.6740 27
POA (g) 0.9253 0.9722 17 0.8836 0.9130 15 0.5581 0.7543 15
POA (p) 0.8668 0.9656 31 0.7814 0.8814 28 0.5079 0.6964 22
POA (gp) 0.9444 0.9726 10 0.8929 0.9188 10 0.5843 0.7726 6

ProAlign (bw400) 0.9978 0.9631 4 0.9163 0.9072 4 0.6045 0.7490 5

Prrn 0.9364 0.9458 24 0.9036 0.9064 11 0.5903 0.7549 10

Prrn (S10) 0.9371 0.9458 23 0.8997 0.9086 12 0.5964 0.7596 4

T-Coffee 0.8867 0.9656 29 0.8129 0.8989 24 0.5322 0.7337 18
T-Coffee (c) 0.9201 0.9733 18 0.8956 0.9194 6 0.5972 0.7543 7

T-Coffee (f ) 0.8867 0.9656 28 0.8129 0.8989 23 0.5322 0.7337 17
T-Coffee (s) 0.7892 0.9536 37 0.7151 0.8637 32 0.4447 0.6934 31

Dataset 1 has been divided into three homology groups: the high-homology group (75% < seq. id), the medium-homology group (75% < seq. id < 55%) and the
low-homology group (seq. id < 55%). Rankings are computed from the product of SCI and SPS. The top 10 ranks are highlighted in boldface. Abbreviations of the
parameter switches used to produce these results are shown in parentheses. Further details of these can be found in Supplementary Material.
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with a variety of algorithm parameters. The results using
default and any parameter combinations that increased algo-
rithm performance are summarized in Figure 2. In order to
measure relative algorithm performances, a ranking for each
algorithm (and parameter setting) was calculated within each
of the three homology ranges. The rank is based upon the
product of mean SCI score and mean SPSs.

For the high-similarity datasets (sequence identity >75%),
there is little difference in accuracy across most of the
algorithms considered here (see Table 1). Align-m and Handel
rank well on this dataset, yet the relative performance of
both these methods dropped rapidly with decreasing sequence
homology. Interestingly, for Align-m, this is the opposite to
what has been observed for protein-based results (43).

PCMA ranked well on both the high- and medium-similarity
datasets; however, the relative performance of this method
dropped on the low-similarity dataset.

ClustalW, MUSCLE, PCMA, POA [with both global and
progressive modes—hereafter referred to as POA (gp)], Pro-
Align, Prrn and T-Coffee (when ClustalW is used to generate
a library of pairwise alignments) perform comparatively well
across all homology ranges, with little significant variation
between these methods. Only ClustalW, ProAlign and POA
(gp) consistently ranked in the top 10 across all the datasets.
There is some redundancy in ranking algorithms over all the
combinations of algorithm parameters we use here, obviously
some combinations produce similar (or even identical) results.
However, this has had little impact on our conclusions.

The results suggest that 60% sequence identity is a
crude threshold, whereby the structural content of predicted
sequence alignments diverges from reference structural
alignments (see Figures 2 and 3).

Dataset 2: comparison of structural and sequence
methods

Now, we contrast the relative performance of the comparat-
ively good sequence-based methods identified in the previous
section with structural alignment methods using a smaller
tRNA dataset. The structure-based methods are generally
computationally more intensive than the sequence-based
methods—hence the small size (in terms of the number of
sequences and the sequence length) of this dataset.

We use dataset 2 to compare the relative performances of
structure-based methods (e.g. Dynalign, Foldalign, PMcomp
and Stemloc) to the ‘better’ sequence-based methods identified
in the previous section (e.g. ClustalW, MUSCLE, PCMA,
POA (gp), ProAlign and Prrn). We observe a dramatic diver-
gence in relative performances below �60% sequence identity
between the structure- and the sequence-based methods (see
Figure 3).

The structural methods Dynalign, Foldalign and PMcomp
show high conservation of structural information (SCI) across
all homology ranges. However, the SPS of Dynalign and
PMcomp are significantly lower than that of Foldalign. The
difference is mostly marked in the high to medium homology
range. This is possibly because the current versions of Dyna-
lign and PMcomp optimize scores solely based on secondary
structure information and hence are likely to produce rather
different alignments to those used in the test dataset, where
sequence information is also included. Stemloc performs com-
paratively well in terms of SCI for sequence identities >40%.
In terms of SPS, however, Stemloc behaves much like the
purely sequence-based methods. Given the apparent sophist-
ication of this method and large computational resources
required to run the algorithm (17,18) these results are rather

Figure 2. Both measures of structural RNA alignment correctness, SCI (A) and SPS (B), are plotted as functions of the mean pairwise sequence identity
(calculated using the reference alignments). The curves are fit to dataset 1 (see text for details) using lowess (local weighted regression) smoothing. At most,
two curves are plotted for each alignment package—one corresponding to the default parameters, the other corresponds to the best parameter combination we
could identify.
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disappointing. We hypothesize that perhaps these are due to
an overemphasis upon the sequence-based component of the
algorithm.

All of the above datasets are freely available from
http://www.binf.ku.dk/users/pgardner/bralibase/. As novel
and updated algorithms become available, updated results
will also be made available from the web page.

DISCUSSION

An aim of this work is to determine the boundaries between
when pure sequence alignment methods perform well and
when augmentation of the alignment with structure is neces-
sary. We wish to highlight that the benchmarks based purely
upon structural protein alignments do not adequately test all
the uses of sequence alignment. In addition, we are pleased to
note that our two independent measures of alignment fitness
(SCI and SPS) produce similar results.

In some cases, we found that altering algorithm para-
meters produced a dramatic improvement over the defaults
(e.g. T-Coffee performance improves using Clustal to generate
a library of pairwise alignments and POA performance
improves dramatically using a combination of the global
and the progressive modes).

We find that the conclusions of previous studies based upon
structural protein alignments do not necessarily hold for the
alignment of structural ncRNA. For example, DIALIGN, iden-
tified as a method which performed well for low-homology
protein alignment did not generally improve (relative to the
alternative methods) on low-homology datasets (32). Another
surprising discovery was that T-Coffee, touted as an excellent
method for high-homology datasets, did not perform well
(again, relative to the alternative methods) on the ncRNA

datasets (32). Another surprise was that the supposedly
outdated, yet still widely used method ClustalW, performed
consistently well across all homology datasets. This is possibly
a consequence of the fact that more recent algorithms are
heavily optimized for protein alignment. The relatively
new methods ProAlign, POA (gp) and MUSCLE also per-
formed consistently well. ProAlign, in particular, produced
(comparatively) reliable alignments and ranked in the top 5
across all homology ranges. This is possibly due to the fact
that ProAlign is one of the few algorithms to use a scoring
scheme derived from reliable nucleic acid sequence align-
ments. The performance of POA (gp) is also remarkable,
not only because it employs a very fast method [said to
accurately align 5000 EST sequences in 4 h on a Pentium II
(44)] but also because it performed consistently well over all
test sets.

Another conclusion of this work is that the ‘twilight zone’ of
ncRNA alignment—the homology range where little to no
structural information of predicted alignments (using the cur-
rent state of the art algorithms) for structurally homologous
sequences is retained—is in the 50–60% sequence-identity
range. This is dramatically higher than that of the protein
sequences which is 10–20% (29). Much of this difference
is, of course, due to the different alphabet sizes and the gen-
erally limited models and the score matrices for nucleotide
alignment.

It is interesting to note that three of the structural methods
(Dynalign, Foldalign and PMcomp), for a short homology
range (40–60% sequence identity), have higher SCI scores
than the reference alignment and that in the same regions
there is a dip in the performance when Dynalign, Foldalign
and PMcomp performance is measured using SPS. This
suggests that the reference alignments themselves may
be improved upon in this homology range.

Figure 3. SCI (A) and SPS (B) as functions of the sequence identity for dataset 2 (see text for details). Five structural algorithms are shown: the Sankoff-based
methods Dynalign, Foldalign, PMcomp and Stemloc, and the base pair probability profile alignment method implemented in PMcomp (fast). These are in contrast
with the hand-curated structural alignments and six of the better sequence-based alignment algorithms (ClustalW, MUSCLE, PCMA, POA (gp), ProAlign and Prrn).

Nucleic Acids Research, 2005, Vol. 33, No. 8 2437

http://www.binf.ku.dk/users/pgardner/bralibase/


Based upon these results the Foldalign score routines seem
to have optimized the delicate balance between the sequence
and the structure-based scores. This implementation of
Sankoff’s algorithm employs a light-weight energy model
(13,41,45,46) in concert with the substitution matrices similar
to those of RIBOSUM (47) and BLOSUM (48), which seem to
produce excellent predictions. However, the computational
complexity of this algorithm is still an issue, global alignment
is restricted to sequences of �200 nt or less, in practice.
Further optimization may increase this bound, however.

The profile-based approach of Hofacker et al. [pmcomp
- -fast (15,49)], holds promise for producing fast and reason-
ably accurate alignments in satisfactory time across all
homology ranges. It by no means produces ‘optimal’ align-
ments in terms of sequence or structure, but is a reasonable
compromise between the sequence- and the structure-based
methods in terms of improved accuracy for the former and
dramatically reduced computational requirements for the
latter. This method is in the process of being re-
implemented in C with affine gap costs and an adjustable
sequence-weighting parameter. This is available as ‘RNApaln’
with the Vienna package version 1.5 or greater (I. Hofacker,
personal communication).

SUMMARY

The results and main conclusions of our study can be
summarized as follows:

(i) The two independent measures of global alignment accu-
racy SPS and SCI are generally in agreement. These
measures only differ significantly on methods, such
as Dynalign and PMcomp, that perform only structural
alignment. The SCI is, therefore, a useful score for asses-
sing the accuracy of structural RNA alignments.

(ii) The relative performance of multiple sequence alignment
programs on RNA alignments can differ remarkably from
the performance observed on protein alignments.

(iii) The multiple sequence alignment algorithms, such as
ClustalW, MUSCLE, PCMA, POA (gp), ProAlign and
Prrn, perform well on high- to medium-homology datasets.

(iv) ClustalW, ProAlign and POA (gp) consistently ranked in
the top 10 across all homology ranges.

(v) The ‘twilight zone’ of ncRNA alignment is in the 50–60%
sequence-identity range.

(vi) Below this limit, algorithms incorporating structural
information (Dynalign, Foldalign, PMcomp and Stemloc)
outperform pure sequence-based methods. However, these
algorithms are computationally demanding which
severely limits their use in practice.

Future directions

One rather interesting result of this study is that the structure
profile alignment method (pmcomp - -fast) produces reason-
able structural alignments across all homology ranges in a
dramatically short time. This method in combination with,
as yet undeveloped, iterative alignment refinement strategies
seems poised to become a method of choice for RNA research-
ers in the near future. This also has interesting implications for
the notoriously difficult problem of ncRNA homology search.
A combination of a database of locally stable regions (50)

(analogous to the index creation of the BLAST procedure)
and the profile alignment method is likely to produce a
superior homology detection tool. This application and the
extension of this method to multiple alignments is an area
of active research.

Other potentially fruitful research areas to explore are as
follows: (i) The implementation of light-weight Sankoff-like
algorithms, which produce reasonable alignments in a short
time-frame and use score routines combining energy and
sequence scores similar to those of Foldalign. (ii) In analogy
to the improvement of structure prediction accuracy by
including stacking parameters (nearest-neighbour model),
perhaps the alignment of RNA sequences over a dinucleotide
alphabet could produce improvements in sequence-based
alignment. (iii) The current score matrices for nucleotide
alignment are generally ad hoc, it is likely that significant
improvements could be gained by using RIBOSUM-like
matrices (47) for scoring alignment. (iv) ‘Intelligent’ align-
ment algorithms which employ sequence information when
this is reasonable or structure alignment when this is better.

NOTE ADDED TO PROOF

Since embarking on this project the alignment algorithms
Align-m, Handel and MAFFT have been updated. Preliminary
analysis of the updated algorithms suggests that improvements
to Align-m and Handel have resulted in modest performance
increases across the high, medium and low similarity groups of
data-set 1. The improvements to MAFFT however have
resulted in major performance increases across all similarity
groups of data-set 1. In fact, across all similarity groups
MAFFT (ver. 5) now ranks second only to \proalign. However,
gap-parameters for this algorithm have been estimated directly
from data-set 1, this bias could be alleviated by determining
optimal gap-parameters for all methods prior to bench-
marking. Preliminary work in this direction shows algorithm
performances on RNAs can in some cases be enhanced
by optimising gap-parameters (personal communication
K. Katoh).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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